

Comparison of VIDAS® GDH automated immunoassay with Cepheid GeneXpert® C. difficile PCR assay and an in-house PCR assay for GluD, for the detection of C. difficile in faecal samples

Davies, K. A.,¹ Bosomworth, C. E.,¹ Carricajo, A.,² Adam, T.³ and Wilcox, M.H¹

¹Leeds Teaching Hospitals Trust Microbiology Department, UK., ²St Etienne CHU Bacteriology, Virology and Hygiene Laboratory, France., ³Charité Berlin Institute of Microbiology and Hygiene, Germany

Introduction

Laboratory diagnosis of *Clostridium difficile* infection (CDI) has traditionally involved the detection of organism specific toxins by cell-cytotoxicity assay or enzyme immunoassay. Recently the poor prognostic value of these assays has been highlighted² and alternative markers of CDI have been sought. Glutamate dehydrogenase (GDH) is a cell-surface associated enzyme found in many bacteria. *C. difficile*-specific GDH has been shown to be highly conserved between different PCR-ribotypes of *C. difficile*¹. Assays targeting *C. difficile* specific GDH have been developed and a recent meta-analysis showed that GDH had a sensitivity and specificity >90% when compared to culture⁸. GDH cannot determine the toxigenic status of *C. difficile* however; it must be used as part of an algorithm for CDI detection, most commonly alongside toxin detection or polymerase chain reaction (PCR) for toxin genes. Although initial algorithms of GDH followed by either direct cell-cytotoxicity assay or cell-cytotoxicity assay on stool cultured isolates improved sensitivity, compared with standalone toxin enzyme immunoassays (EIA), the turnaround time could be up to 3 days^{6, 9}. Using a toxin EIA for the second stage improves the rapidity of two-step algorithms^{3, 7} but such algorithms are limited by the sub-optimal sensitivity of currently available toxin EIAs. Whilst there have been many algorithms proposed, a recent study led to guidance from the Department of Health in England advising using a two-stage algorithm, with GDH (or toxin gene PCR) as the initial screen, for detection of CDI¹¹.

Results

 Table 2. Sensitivity, specificity, positive and negative predictive values and Pearson's correlation of the VIDAS GDH assay compared with two different PCR assays.

Objectives:

To compare a new automated immunoassay, VIDAS® GDH, with the Cepheid GeneXpert® *Clostridium difficile* toxin Polymerase Chain Reaction (PCR) assay and an in-house PCR assay for GDH (*GluD*) of *C. difficile*, for the laboratory diagnosis of CDI.

Methods

One hundred and twenty seven cytotoxin positive diarrhoeal faecal samples submitted to Leeds Teaching Hospitals NHS Trust. Also, 300 samples submitted for routine *C. difficile* testing were collected between June and August 2011 (100 at each of 3 test sites in Leeds, Berlin and St Etienne). All samples were diarrhoeal (took the shape of the container), were <5 days old and stored at 4 C before commercial assay testing, before freezing at -20 C. The commercial assays, VIDAS® GDH and GeneXpert® *C. difficile*, were performed onsite at Leeds and St Etienne. Only the VIDAS® GDH was performed onsite in Berlin, the GeneXpert® *C. difficile* was performed in Leeds. All commercial assays were performed as per manufactures' instructions. The VIDAS® GDH assay was performed on a VIDAS instrument (bioMerièux, France), whilst the GeneXpert® *C. difficile* assay was performed on a smart cycler (Cepheid, France).

All samples (Berlin and St Etienne) were shipped at -20 C to Leeds for testing with an in-house GDH real-time PCR assay; samples from Leeds were initially tested before storage at -20 C. Briefly, samples were diluted in STAR buffer (Roche, Germany) including 1/10 chloroform, before being spun in a centrifuge at 1500g for 10 minutes. DNA was extracted from the supernatant using the Qiagen DX kit on the Corbett QiaXtrator (Qiagen Ltd, UK). An internal control of *Yersinia ruckeri*, an enteric pathogen of Salmonid fish species, was added to each sample before extraction to check for inhibition. DNA template was added to Brilliant QPCR multiplex mastermix (Agilent, UK), and primers and probes for *GluD* and *Yersi* (table 1). PCR was performed on a Stratagene MX3000P (Agilent, UK) with the following thermoprofile; 95 C for 10 mins, followed by 45 cycles of 95 C for 30 secs, 60 C for 30 secs and 72 C for 30 secs. Based upon limit of detection studies (data not shown), samples with a CT value for *Yersi* and a CT value of <40 cycles for *GluD* were recorded as negative. Samples with a CT value for *Yersi* and a CT value of <40 cycles for *GluD* were recorded as positive. Samples with no CT value for *Yersi* were recorded as inhibited and repeated where there was sufficient sample. If the negative control was positive (i.e. showing contamination) the samples were re-extracted and PCR was performed again.

Comparator					
assay	Sensitivity	Specificity	PPV	NPV	Pearson's
(n = 300)	(95% CI)	(95% CI)	(95% CI)	(95% CI)	correlation
GeneXpert	98.5	88.1	87.6	98.6	
C. difficile ^{\$}	(94.2 - 99.7)	(81.8 – 92.5)	(81.0 – 92.2)	(94.5 – 99.8)	0.86
In-house GDH	92.6	91.0	90.7	92.9	
PCR*	(86.5 – 96.2)	(84.8 – 94.9)	(84.2 – 94.7)	(87.0 -96.4)	0.84
In-house GDH					
discrepant	92.6	95.8	95 5	03.2	
analysis^	(86.5-96.2)	(90.6-98.3)	(89.9-98.1)	(87.4-96.5)	0.89

\$ n = 296 (invalids removed)

* n =280 (insufficient samples removed)

[^] n = 278 (removed 2 samples where status could not be determined)

Table 3. VIDAS GDH false-negative sample characterisation

Sample	Frozen/Fre	Commercia	VIDAS	VIDAS	Xpert	In-house	In-	Repeat In-	Repeat	Culture on	Culture on	Final
No.	sh on initial	I GDH	GDH	GDH	toxin	GDH	house	house	In-	Brazier's	Chrom	decision
	GDH PCR	assay	assay	VT	PCR	PCR	GDH	GDH PCR	house	agar	ID® agar	on stool
	testing	result	result		result	assay	PCR	assay	GDH			status
						result	assay	result	PCR			
							СТ		assay			
							value		СТ			
									value			
L9	Fresh	Positive	Negative	0.07	Positive	Positive	37.44	Positive	38.81	Positive	Positive	Positive
L27	Fresh	Positive	Negative	0.00	Negative	Positive	39.58	Negative	No CT	Negative	Negative	Positive
L44	Fresh	Negative	Negative	0.00	Negative	Positive	39.04	Negative	No CT	Negative	Negative	Positive
L48	Fresh	Negative	Negative	0.00	Negative	Positive	38.08	Negative	No CT	Negative	Negative	Positive
S67	Frozen	Negative	Negative	0.01	Negative	Positive	38.68	Negative	40.31	Negative	Negative	Positive
S70	Frozen	Negative	Negative	0.00	Negative	Positive	34.63	Positive	38.08	Insufficient	Insufficient	Positive
										to culture	to culture	
S77	Frozen	Negative	Negative	0.00	Negative	Positive	39.34	Negative	No CT	Negative	Negative	Positive
B39	Frozen	Negative	Negative	0.00	Negative	Positive	39.92	Positive	28.92	Positive	Positive	Positive
B47	Frozen	Negative	Negative	0.00	Negative	Positive	39.36	Insufficient		Insufficient	Insufficient	Positive
										to culture	to culture	
B98	Frozen	Negative	Negative	0.00	Negative	Positive	39.10	Negative	No CT	Negative	Negative	Positive

Samples that were positive by the VIDAS® GDH assay but negative by *GluD* PCR were thawed, re-extracted and re-tested using the *GluD* PCR assay. In addition they were tested using a CE marked GDH assay (Alere, USA) and cultured directly onto ChromID® *C. difficile* agar (bioMerièux, France) and onto Brazier's agar (Oxoid, UK) following alcohol shock in 50:50 v/v absolute ethanol and water. If samples were positive by repeat *GluD* PCR testing, or negative on repeat *GluD* PCR testing but positive by the Alere assay and/or culture, or indeterminate on additional testing, the sample status was determined to be GDH positive. In three cases the initial GDH PCR was positive but with a CT >38.0, the repeat GDH PCR was negative and all additional tests were negative. These samples were classified as positive as it was considered that the repeat negative result could have been due to very low numbers; as demonstrated by the initial high CT value. Results were analysed both before and after repeat testing.

Sensitivity, specificity, positive and negative predictive values, and Pearson's correlation were calculated for the VIDAS GDH assay compared with the GeneXpert *C. difficile* PCR assay, and the in-house PCR assay for *GluD* (GDH).

Table 1. Primers and probes used for in-house GDH real-time PCR assay

Target	Primer or probe	Nucleotide sequence (5'-3')
Yersinia ruckeri 16s	YersiF1 ⁴	GGAGGAAGGGTTAAGTGTTA
Yersinia ruckeri 16s	YersiR1 ⁴	GAGTTAGCCGGTGCTTCTT
Yersinia ruckeri 16s	YersiP1 ⁴	CY5-
		GCGACTAACGTCAATGTTCAGTGC-
		BHQ2
GluD	GluDF3 ⁵	GTCTTGGATGGTTGATGAGTAC
GluD	GluDR2⁵	TTCCTAATTTAGCAGCAGCTTC
GluD	GluDP1 ⁵	FAM-AAGCCAGTTGAATTTGGTGG-
		BHQ1

Table 4. VIDAS GDH false-positive sample characterisation

Sample	Frozen/Fre	Commercia	VIDAS	VIDAS	Xpert	In-house	In-	Repeat In-	Repea	Culture on	Culture on	Final
No.	sh on initial	I GDH	GDH	GDH	toxin	GDH	house	house	t In-	Brazier's	Chrom	decision
	GDH PCR	assay	assay	VT	PCR	PCR	GDH	GDH PCR	house	agar	ID® agar	on stool
	testing	result	result		result	assay	PCR	assay	GDH			status
						result	assay	result	PCR			
							СТ		assay			
							value		СТ			
									value			
L7	Fresh	Positive	Positive	2.77	Positive	Negative	42.09	Inhibited		Positive	Positive	Positive
L97	Fresh	Positive	Positive	0.26	Positive	Negative	No ct	Negative	No CT	Negative	Negative	Negative
S7	Frozen	Positive	Positive	2.69	Positive	Negative	No ct	Negative	No CT	Positive	Positive	Positive
S19	Frozen	Positive	Positive	4.34	Positive	Negative	No ct	Negative	No CT	Insufficient	Insufficient	Negative
										to culture	to culture	
S22	Frozen	Positive	Positive	5.00	Positive	Negative	No ct	Negative	40.59	Insufficient	Insufficient	Unable to
										to culture	to culture	determine
S39	Frozen	Equivocal	Positive	1.61	Positive	Negative	No ct	Positive	39.80	Insufficient	Insufficient	Unable to
										to culture	to culture	determine
S43	Frozen	Positive	Positive	2.58	Positive	Negative	No ct	Negative	No CT	Insufficient	Insufficient	Negative
										to culture	to culture	
S53	Frozen	Positive	Positive	5.83	Positive	Negative	42.11	Positive	32.21	Insufficient	Insufficient	Positive
										to culture	to culture	
S57	Frozen	Positive	Positive	0.39	Negative	Negative	No ct	Positive	38.87	Negative	Negative	Positive
S90	Frozen	Negative	Positive	0.19	Negative	Negative	No ct	Negative	No CT	Negative	Negative	Negative
B9	Frozen	Positive	Positive	0.82	Negative	Negative	No ct	Insufficient		Insufficient	Insufficient	Negative
										to culture	to culture	
B12	Frozen	Positive	Positive	6.31	Positive	Negative	No ct	Positive	26.21	Positive	Positive	Positive
B75	Frozen	Positive	Positive	5.40	Negative	Negative	No ct	Negative	No CT	negative	negative	Negative

Discussion

The VIDAS GDH assay has been compared here with two PCR assays (toxin gene detection & GDH gene detection). It showed a sensitivity and specificity of 92.6 and 95.8%, respectively, compared with PCR for GDH. VIDAS GDH had a sensitivity and specificity of 98.5 and 88.1%, respectively, compared with Cepheid *C. difficile* PCR. The GDH PCR assay was used as a comparator to examine the VIDAS GDH assays ability to detect GDH from a sample, not diagnose CDI. The comparison with the Cepheid *C. difficile* PCR assay demonstrates that, as expected, the specificity decreases to 88.1% when comparing with a method detecting potentially toxigenic *C. difficile*. This comparison demonstrates the equivalent sensitivity of the VIDAS GDH assay.

GDH detection in faecal samples has been shown to have a positive predictive value (PPV) (93.5%), when compared with culture of *C. difficile* from faecal samples ¹⁰, although it does not indicate the presence of a toxigenic isolate. The positive predictive value of GDH reduced in that study however, when compared with cytotoxigenic culture (67.5%) ¹⁰. The poor PPVs seen in comparison with direct cytotoxin indicate that GDH should not be used as a standalone assay for the diagnosis of CDI⁸.

VIDAS GDH has shown a high negative predictive value (NPV) in comparison to culture and direct cytotoxigenic culture, which correlates with the high NPV seen with other GDH EIA's^{6-7, 9-10}. Indeed, the high sensitivity of these methods has lead to the inclusion of GDH as a first (screening) assay of two-stage algorithms for CDI diagnosis, although there is little consensus on the best algorithm ^{3, 6-7, 9-10}. A recent study involving ~12,500 faecal samples demonstrated that inclusion of GDH as the first line assay enables the detection of patients carrying *C. difficile* who are not toxin positive; i.e. potential *C. difficile* excretors¹¹. These patients may be possible sources of organism transmission, and so may pose an infection control risk. Identification of these patients would enable infection prevention precautions to be put in place.

Conclusions

- The VIDAS® GDH assay has comparable accuracy to the GeneXpert® C. difficile PCR assay and our in-house GluD PCR assay
- The VIDAS® GDH assay could be an option as a first line (screening) test in a two-stage *C. difficile* testing algorithm
- The optimal combination of tests depends on the clinical question to be answered

References

- Carman, R.J., Wickham, K. N., Chen, A. M., Lawrence, A. M., Boone, J. H., Wilkins, T. D., Kerkering, T. M. and Lyerly, D.M. 2012. Glutamate dehydrogenase (GDH) is highly conserved among *Clostridium difficile* ribotypes. Journal of Clinical Microbiology epub ahead of print on 1st February 2012.
- 2. Eastwood, K., Else, P., Charlett, A. and Wilcox M. 2009. Comparison of nine commercially available *Clostridium difficile* toxin detection assays, a realtime PCR assay for *C. difficile tcdB*, and a glutamate dehydrogenase detection assay to cytotoxin and cytotoxigenic culture methods. Journal of Clinical Microbiology. 47: 3211-3217.
- 3. Fenner, L., Widmer, A. F., Goy, G., Rudin, S. and Frei, R. 2008. Rapid and reliable diagnostic algorithm for detection of *Clostridium difficile*. Journal of Clinical Microbiology. **46:** 328-330
- 4. Lund, M., Nordentoft, S., Pedersen, K. and Madsen, M. 2004. Detection of *Campylobacter spp*. In chicken faecal samples by real-time PCR. Journal of Clinical Medicine. **42:** 5125-5132
- 5. Paltansing, S., van der Berg, R. J., Guseinova, R. A., Visser, C. E., van der Vorm, E.R. and Kuijper, E.J. 207. 2005. Characteristics and incidence of *Clostridium difficile*-associated disease in The Netherlands. Clinical Microbiology and Infection. **13**: 1058-1064
- 6. Reller, M. E., Lema, C. A., Perl, T. M., Cai, M., Ross, T. L., Speck, K. A. and Carroll, K. C. 2007. Yield of stool culture with isolate toxin testing verses a two-step algorithm including stool toxin testing for detection of toxigenic *Clostridium difficile*. Journal of Clinical Microbiology. **45:** 3601-3605
- 7. Sharp, S. E., Ruden, L. O., Pohl, J. C., Hatcher, P. A., Jayne, L. M. and Ivie, W. M. 2010. Evaluation of the C. Diff Quik Chek complete assay, a new glutamate dehydrogenase and A/B toxin combination lateral flow assay for use in rapid, simple diagnosis of Clostridium difficile disease. Journal of Clinical Microbiology. **48:** 2082-2086
- 8. Shetty, N., Wren M. W. D. and Coen, P. G. 2011. The role of glutamate dehydrogenase for the detection of *Clostridium difficile* in faecal samples: a metaanalysis. Journal of Hospital Infection. **77:** 1-6
- 9. Ticehurst, J. R., Aird, D. Z., Dam, L. M., Borek, A. P., Hargrove, J. T. and Carroll, K. C. 2006. Effective detection of toxigenic *Clostridium difficile* by a two-step algorithm including tests for antigen and cytotoxin. Journal of Clinical Microbiology. **44:** 1145-1149
- 10. Wren, M. W. D., Sivapalan, M., Kinson, R. and Shetty, N. P. 2009. Laboratory diagnosis of *Clostridium difficile* infection. An evaluation of tests for faecal toxin, glutamate dehydrogenase, lactoferrin and toxigenic culture in the diagnostic laboratory. British Journal of Biomedical Science. **66:** 1-5
- 11. Updated guidance on the diagnosis and reporting of *Clostridium difficile*. Epub. <u>http://www.dh.gov.uk/en/Publicationsandstatistics/Publications/PublicationsPolicyAndGuidance/DH_132927</u> accessed 6th March 2012